Large deviations in non-uniformly hyperbolic dynamical systems
نویسنده
چکیده
We prove large deviation principles for ergodic averages of dynamical systems admitting Markov tower extensions with exponential return times. Our main technical result from which a number of limit theorems are derived is the analyticity of logarithmic moment generating functions. Among the classes of dynamical systems to which our results apply are piecewise hyperbolic diffeomorphisms, dispersing billiards including Lorentz gases, and strange attractors of rank one including Hénon-type attractors.
منابع مشابه
Historic set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملFluctuations of observables in dynamical systems: from limit theorems to concentration inequalities
We start by reviewing recent probabilistic results on ergodic sums in a large class of (non-uniformly) hyperbolic dynamical systems. Namely, we describe the central limit theorem, the almost-sure convergence to the gaussian and other stable laws, and large deviations. Next, we describe a new branch in the study of probabilistic properties of dynamical systems, namely concentration inequalities....
متن کاملDevroye Inequality for a Class of Non - Uniformly Hyperbolic Dynamical Systems
In this paper, we prove an inequality, which we call " Devroye inequality " , for a large class of non-uniformly hyperbolic dynamical systems (M, f). This class, introduced by L.-S. Young, includes families of piece-wise hyperbolic maps (Lozi-like maps), scattering billiards (e.g., planar Lorentz gas), unimodal and Hénon-like maps. Devroye inequality provides an upper bound for the variance of ...
متن کاملUniversal Approximator Property of the Space of Hyperbolic Tangent Functions
In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.
متن کاملStatistical Properties of Chaotic Dynamical Systems: Extreme Value Theory and Borel-cantelli Lemmas
In this thesis, we establish extreme value (EV) theory and dynamical BorelCantelli lemmas for a class of deterministic chaotic dynamical systems. We establish the distributional convergence (to the three classical extreme value distributions) of the scaled sequence of partial maxima of some time series arising from an observable on systems such as the planar dispersing billiards, Lozi-like maps...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008